Filoviridae & the Ebola Virus
Presented by David Gerber

Lecture Overview
- Structure
- Virus Replication Cycle
 - Protein Synthesis
- Pathogenesis

Filoviridae Family
- *Filo:* from Latin meaning threadlike
- Structurally & Genetically similar to Rhabdoviridae and Paramyxoviridae
- Two Genera:
 - Marburg-like virus
 - Ebola-like virus

Structure
- Pleomorphic, Filamentous
- Striated
- 80nm diameter
- 130-140,000nm long
- Enveloped

Genome
- Negative Sense ssRNA
- Unsegmented
- 7 proteins
- Gene overlap

Ebola Virus Proteins
- GP- Transmembrane glycoprotein
- NP- Nucleoprotein necessary for capsid assembly
- VP24- Anti-viral inhibitor?
- VP35- Inhibits IFN production
- VP30- Transcription anti-terminator
- VP40- necessary for capsid assembly and budding
- L- Viral Polymerase
Replication Cycle

1 Host Entry
- Contact with infected bodily fluids
- Enters through mucous membrane or directly into blood (needle stick)
- No confirmed spreading of virus by aerosol in nature

Replication Cont.

2 Adsorption- Glycoprotein (GP₁) binds cellular receptor
- Mediated by cellular cofactors, i.e. folate receptor α
- Mononuclear phagocytic cells & monocytes are primary targets

3 Endocytosis
- pH lowering in endosome
- GP₁ mediates membrane fusion; release of viral particle into cytoplasm

Replication Cont.

4 Protein Synthesis
- Requires viral polymerase (L)
- VP30 anti-terminator allows transcription of genes downstream from first gene (Ebola Only)
- VP35 prevents anti-viral response to dsRNA

-GP synthesis
- Complex post-translational processing
 - O-linked/N-linked glycosylation
 - Proteolitic cleaving by proteases
 - Aylation

Ebola Glycoprotein

- GP₁/GP₂- transmembrane protein
 - Binding/Fusion
- sGP- truncated soluble protein (Ebola Only)
 - Secreted
 - Decoy for immune system?
- Give rise to neutralizing & protective antibody

Replication cont.

5 Virus Assembly & release - Exact mechanism not known
- NP essential for RNA packaging
- VP40 essential for Budding at membrane
- VP40 and GP give filamentous morphology

Complete Virion contains:
- ssRNA, NP, VP35, VP24, L, VP30 (Ebola Only)
Ebola Virus: Interactions With Immune System

- Innate Immune System
- Monocytes Primary targets
 - Carry virus throughout body
 - Lysis releases cytokines
- Early infection of Dendritic Cells
 - Delays specific immune response

Interaction with Immune System Cont.

- Over expression of proinflammatory signals
 - Cytokines
 - Does not clear infection
- VP35 inhibition of IRF3
 - No transcription of IFN genes
 - No antiviral response to dsRNA
- Inhibition/Destruction of immune cells
 - Neutrophils & macrophages

Pathogenesis

- Glycoprotein responsible for CPE of virus
 - Breakdown of extracellular matrix
 - Rounding and detachment of endothelial cells
 - sGP inhibits Neutrophils
 - Evidence suggests virus does NOT directly cause most of the disease pathology

Pathogenesis

- Massive Immune Response
- Activation of macrophages and monocytes
 - Clumping may cause coagulation observed in some clinical cases
 - Proinflammatory signals released
 - Cytokines, TNF, IFN
 - Breaks downs endothelial barrier
 - Blood leaks into tissue- blood pressure drops-Shock most frequent cause of death.

Ebola Hemorrhagic Fever

- 2-21 day incubation period
- Abrupt onset: flu-like symptoms
 - Fever, headache, muscle aches, stomach pains
- Rash, red eyes, internal/external bleeding
- Death (50-90% according to WHO)

Ebola Hemorrhagic Fever

- Not known why some are able to survive
- Larger Early Immune response in those that do
- Virus May remain up to 3 months
 - Convalescents potential human reservoir
 - Virus present in seminal fluid
Treatment/Vaccine

- No effective treatment
 - Research on treating inflammatory immune response
 - Anti-INF, Anti-cytokine antibodies
 - Steroids
- No approved vaccine
 - GP protective antibodies
 - Also immunosuppressive

Ebola as a Biological Weapon

- As late as 1992 Russia was producing large quantities of Ebola virus for use as a weapon.
 - No vaccine
 - No treatment
 - High infectivity (as few as 17 particles necessary to cause disease)
 - Can potentially be spread by aerosols
- Japanese Terrorist Cult, Aum Shinrikyo, unsuccessfully attempted to obtain Ebola virus

References

1 Filoviruses. University of Leicester Department of Microbiology. www.micro.msb.le.ac.uk/3035/Filoviruses.html